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Abstract—Spatial crowdsourcing, e.g., Vehicular Ad-Hoc Net-
work (VANET)-based spatial crowdsourcing, is a new distributed
computing paradigm, in which task assignments highly rely on
the wisdom of the crowdsourcing platform. However, with the in-
crease in user data leakage incidents, the existing task assignment
methods are no longer sufficient to meet the privacy requirements
of users. In the existing VANET-based spatial crowdsourcing, task
assignments are usually performed by a trusted third party based
on the real locations of tasks and drivers (task performers), which
may lead to the leakage of the users’ locations. Furthermore,
the drivers usually prefer to query the nearest tasks to them
in a geometric range, at this point sending query requests to
remote crowdsourcing servers increases unnecessary response
delays. To assign tasks securely and efficiently, we propose a
privacy-preserving task assignment scheme based on OT and
edge computing (PriTAEC), which is the first to apply Oblivious
Transfer (OT) and edge computing to preserve the location
privacy of VANET-based spatial crowdsourcing. In the scheme,
we first utilize Hilbert Curve and Bloom Filter to implement
location range queries. Then, we use geohash location encoding
and Oblivious Transfer to achieve fine-grained location matching.
In particular, we design a task assignment algorithm with an
offline-online phase to improve the efficiency of task assignments.
Finally, we prove the security of the scheme and evaluate its
performance, which shows our scheme is secure and efficient.

Index Terms—Location privacy, edge computing, task assign-
ment, privacy-preserving, range query, oblivious transfer.

I. INTRODUCTION

SPATIAL crowdsourcing [1] is a spatio-temporal based
distributed computing paradigm, in which task assign-

ments highly rely on the intelligence of the crowdsourcing
platform. Currently, there are many platforms that support
spatial crowdsourcing services, such as MTurk, Upwork and
CrowdFlower. In VANET, spatial crowdsourcing can be ap-
plied to many data collection and integration scenarios, e.g.,
traffic flow monitoring, road condition monitoring, and online
car-hailing [2], [3].
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In VANET, spatial crowdsourcing is characterized by drivers
who need to perform tasks at a specific time and location.
In particular, drivers usually prefer to query the tasks nearest
to them to reduce travel overhead, while requesters (task
publishers) usually need drivers who meet the task attributes to
improve the quality of task results. Therefore, in the existing
VANET-based spatial crowdsourcing, the crowdsourcing ser-
vice provider (CSP) performs task assignments based on the
plaintext information about the locations and attributes of the
drivers and tasks. Though the approach can accurately assign
tasks, it may lead to the leakage of sensitive information of
users, e.g., locations and interests. This is because, in the
real world, the CSP is not completely trustworthy, and it
may intentionally disclose sensitive user information to other
third parties for personal benefit, which can be used to infer
a person’s interests or daily trajectory. Furthermore, in the
existing VANET-based spatial crowdsourcing, the drivers and
requesters send requests to the remote CSPs, which increases
unnecessary communication delays. Therefore, a secure and
efficient task assignment scheme is needed for the VANET-
based crowdsourcing platforms.

In this paper, we mainly focus on the study of location
privacy issues. Hu and Yuan et al. [6], [7] divided geographic
space into grids to implement range queries. In [6], each
grid is labeled and users encrypt their locations using inner
product encryption. The CSP utilizes ciphertexts to calculate
the inner product to judge the location relationship, in which
original data is not disclosed to the CSP. The scheme of
Yuan et al. [7] requires users to submit HMAC codes of
their grid locations and then implements location matching by
whether the location codes are the same, which reduces the
computing cost of the CSP, but sacrifices the accuracy of loca-
tion matching. Han et al. [8] proposed spatial crowdsourcing
privacy-preserving location distance computation, which uses
bilinear pairs and Chebyshev chaotic mapping to accurately
compute the location distance. However, the CSP needs to
calculate the distance between each task and driver, which is
computationally expensive.

In this paper, we propose a privacy-preserving task assign-
ment scheme (PriTAEC) based on OT and edge computing,
which can assign tasks securely and efficiently. In PriTAEC,
we divide the task assignment into two phases. In the first
phase, we utilize Hilbert Curve [9] to map two-dimensional
location coordinates to one-dimensional Hilbert curve values
and then use Bloom Filter [10] to implement the grid range
query, in which the edge nodes can find out tasks within the
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query range of the drivers. In the second phase, we utilize
Geohash location encoding [11] and Oblivious Transfer [12]
to implement the fine-grained location matching, in which the
edge nodes can assign the nearest tasks to the drivers. To help
the requesters to find the drivers who satisfy the task attributes,
we use the attribute-based encryption scheme [13] to ensure
that only the drivers who satisfy the task attributes can decrypt
the content of the tasks. In particular, to improve the efficiency
of task assignments, we design a task assignment algorithm
with an offline-online phase in which edge nodes can receive
tasks for moving drivers, and then drivers can assist edge nodes
to implement task assignments with simple online computing.
The offline-online algorithm mainly plays the role of pre-
calculation. It not only saves clients’ computation and storage
costs but also improves the efficiency of computation, which is
very friendly to the mobile side with limited computation and
storage. Moreover, when users are busy and want to initiate
the query in advance, the offline-online algorithm can meet
the users’ pre-calculation requirements, which also improves
the users’ time utilization. In particular, the offline-online
algorithm can also be convenient for clients when their signal
is weak.

The main contributions of our work can be summarized as
follows:

1) We propose a privacy-preserving task assignment scheme
based on OT and edge computing, which utilizes edge comput-
ing to reduce response latency, uses Hilbert curves and Bloom
filters to achieve range queries and uses Oblivious transfers
and Geohash to achieve fine-grained location matching.

2) We use a hybrid encryption (attribute-based encryption
and symmetric encryption) to preserve the confidentiality of
the task content, which only allows the drivers who satisfy the
task attributes to decrypt the task.

3) We design a task assignment algorithm with an offline-
online phase to improve the efficiency of the task assignment,
in which the edge node can receive tasks for the drivers in the
offline phase, and then the drivers who want to query tasks
only need to perform simple calculations in the online phase
to assist the edge node to implement task assignments.

4) We analyze the security of the PriTAEC scheme and
evaluate its performance, which shows that the PriTAEC
scheme can achieve task assignments securely and efficiently.

This paper is organized as follows. In Section II we discuss
the related work on the topics covered in this paper. In Section
III we provide the necessary background knowledge of the
techniques used in this paper. In Section IV we formulate
the issues related to the PriTAEC scheme, including the
system model, threat model, and design goals. In Section
V we describe the detailed construction of the PriTAEC
scheme. In Sections VI and VII we provide security analysis
and performance evaluation, respectively. In Section VIII we
describe the conclusions we have drawn.

II. RELATED WORK
Our research is related to three topics: VANET-based spatial

crowdsourcing task assignments, Location privacy preserva-
tion, and Edge computing. Those topics are discussed sepa-
rately as follows.

A. VANET-based Spatial Crowdsourcing Task Assignments

VANET-based spatial crowdsourcing is dedicated to as-
signing tasks to appropriate workers (drivers) based on their
spatio-temporal properties [14]. The existing task assignment
problem of VANET-based spatial crowdsourcing is generally
divided into two scenarios to study [1]: dynamic scenario
(offline scenario) and static scenario (online scenario). In the
static scenario, the problem that the crowdsourcing server has
to solve is how to assign tasks so that the workers have
minimal travel overhead and the requesters receive high quality
results, given that the spatio-temporal information of the tasks
and workers is known in advance. In the dynamic scenario, the
problem that the crowdsourcing server has to solve is how to
respond in real time to the task query requests sent by workers.
Obviously, in the dynamic scenario, the crowdsourcing server
is aware of the worker’s requirements only after the worker
submits relevant information, which is more in line with real
world, but it needs to face more challenges such as timeliness,
privacy, etc.

There are two existing models of VANET-based spatial
crowdsourcing task assignments [1]: Worker Request Model
(WRM) and Server Assignment Model (SAM). In WRM,
workers can choose the appropriate tasks according to their
preferences. In SAM, workers need to upload thier spatio-
temporal information to the crowdsourcing platform, and then
the crowdsourcing server assigns tasks to the workers.

B. Location Privacy Preservation

The main privacy problem studied in this paper is location
privacy. K-anonymity [15]–[17] enables to hide the real loca-
tion in a set of location data or cloaked area so that the success
probability of an attacker to infer the user’s location is 1

K . The
pseudonym technique obscures the real identity of users and it
can achieve a certain degree of privacy preservation. Li et al.
[19] proposed a location filtering protocol using K-anonymity
and cloaked area which can securely fulfill location-based
service queries under three-party interaction, but the setting
of the cloaked area may lead to lower query accuracy. Lien
et al. [20] proposed circular shift queries using Hilbert curve
and homomorphic encryption, which preserves the privacy of
location and supports private index retrieval, but it is not ap-
plicable to nearest neighbor queries. Kong et al. [37] proposed
location privacy preserving range query in vehicular sensing,
which can retrieve vehicle sensing data without revealing
location privacy. Wang and Zheng et al. [22]–[24] proposed the
geometric range query using inner product encryption, which
can effectively preserve the location while judging the position
relationship between location points and geometric ranges.
Shu et al. [38] proposed a proxy-free task matching scheme,
which implements task matching by searchable encryption
and enables user revocation with minimal system overhead.
Zhang et al. [25] proposed a blockchain-based crowdsourcing
scheme, which effectively realizes fine-grained privacy level
for different users. This may increase the computing burden
on workers as they have to determine the access rights for
each task.
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C. Edge Computing

Edge computing can collect and analyze sensory data from
edge devices [26]. Compared to cloud computing, edge com-
puting can improve communication and computation latency.
Edge computing has been widely used in Internet of Vehicles
(IoV) for spatial crowdsourcing, which allows drivers to send
query requests to the nearest edge node. Basudan et al. [2] pro-
posed crowdsourcing-based road condition monitoring, which
can collect and integrate drivers’ road data. Bonomi et al. [27]
proposed hierarchical distribution architecture and defined the
role of edge computing in the Internet of Things (IoT). Liu et
al. [28] and Li et al. [29] proposed secure edge computing for
EV charging, where RSUs act as edge nodes to match charging
piles and EVs, and the location and state of vehicles are not
revealed to edge nodes. Cui et al. [30] proposed IoV computing
platform which provides low latency computing services to
implement resource management and task loading. Li et al.
[31] proposed carpooling edge computing for IoV, which
implements user’s pick-up and drop-off location matching and
anonymous verification.

III. PRELIMINARIES

In this section, we provide the fundamentals of the tech-
niques used in the PriTAEC scheme, which include Hilbert
curve, Geohash, Bloom filter, Oblivious transfer, Private equal-
ity test and Ciphertext-policy attribute-based encryption.

A. Hilbert Curve and Geohash

Hilbert curves are continuous fractal space filling curves
which were first introduced by Hilbert [9]. A Hilbert curve in a
multidimensional space traverses every point in the space once
and only once in a particular order. Specifically, the order-
n Hilbert curve divides the region into 2n ∗ 2n subregions,
and Fig.1 and Fig.2 depict the order-1 and order-2 Hilbert
curves, respectively, where each grid has a Hilbert value. The
important reason for using the Hilbert curve is that it is a
very suitable tool [21] for our proposed scheme. First, the
Hilbert curve can map two-dimensional location coordinates
to one-dimensional Hilbert values using a spatial transforma-
tion function. Second, the Hilbert curve can traverse every
subgrid of the grid space and a Hilbert value can represent
a rectangular range. Third, given the curve parameters, users
can easily construct Hilbert curves and determine the range of
the query.
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Fig. 1: order-1
curve
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Fig. 2: order-2
curve

Geohash is a hierarchical, grid-based index in which lo-
cations can be mapped to strings [11]. A geohash string (or

encoding) is obtained from the latitude and longitude pairs of
cross bits. Geohash code has two properties, 1) the longer the
geohash code the more accurate the position is, and 2) If two
geohash codes with the same prefix are longer then they are
closer together.

B. Bloom Filter
Bloom filter is proposed by Bloom [10] to solve the approx-

imate set membership problem, which can quickly determine
whether an element is an element of a set. Bloom filter is
subject to false positives, which can be improved by setting
the relevant parameters [32].

Specifically, Bloom Filter maps each element of a set to a
binary string by a number of hash functions and the detected
element is mapped to a binary string by a number of the same
hash functions. If the position of the element binary string is
1, the set binary string is also 1, then the element is in this
set.

C. Oblivious Transfer and Private Equality Test
Oblivious Transfer (OT) is an important cryptographic prim-

itive in secure multi-party computing, which was introduced
by Rabin [12]. In OT, the sender has a pair of input strings
(x0, x1) interacts with the receiver who has an input selection
bit b ∈ {0, 1}. The sender sends a message pair (x0, x1) to
the receiver who only learns xb but not any information about
x1−b. This protocol is known as 1-out-of-2 OT.

Private Equality Test (PEQT) is a two-party protocol intro-
duced by Beaber et al. [33] in which the sender has the input
string x0 interacts with the receiver has the input string x1.
If x0 = x1, the receiver receives bit 1, otherwise it receives
bit 0. In this process, the sender does not get any information
about x1.

D. Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
CP-ABE [13] is an encryption algorithm that implements

data access control, the private key of ABE is associated with
a set of attributes, and the ciphertext is encrypted by a specific
access structure. Only if the key-related attributes satisfy
the access structure, the ciphertext can be decrypted, usu-
ally CP-ABE consists of four basic algorithms: ABE.Setup,
ABE.Enc, ABE.KeyGen and ABE.Dec, as follows.
•ABE.Setup(1ℵ) → (PK,MK). The data owner

invokes the initialization algorithm to generate the necessary
system parameters, which takes a security parameter ℵ as input
and outputs a public key PK and master key MK.
•ABE.Enc(PK,M,L) → ct. The data owner invokes

the encryption algorithm to encrypt a message M , which takes
the public key PK, message M and a access structure L as
input and outputs the ciphertext ct.
•ABE.KeyGen(MK,P ) → skL. The data user in-

vokes the key generation algorithm to generate the attribute
key, which takes the master key MK and a set of attributes
P as input and outputs the decryption key skL.
•ABE.Dec(PK, ct, skL) → M. The data user invokes

the decryption algorithm to decrypt the ciphertext ct, which
takes the public key PK, ciphertext ct and key skL as input
and outputs the message M .
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IV. PROBLEM FORMULATION

In this section, we describe the system model, threat model,
design goals and main ideas of the PriTAEC scheme. We
summarize the notations used by the PriTAEC scheme in Table
1.

TABLE I: PriTAEC Notations

Notation Definition
(x, y) Location coordinates

< x, y > Grid coordinates
h̄ Spatial transformation funtion
hi Hash functions in Bloom filters
m Length of Bloom Filter

σsign Signature of edge nodes
t Timestamp of edge nodes
id Identifier of the user or task
pub Public parameters

BFR, BFD Binary arrays of requesters, drivers
Pi Ciphertext policies

CK , CM Ciphertext of the key, task
Mn×n Permutation matrix

bindex, b̃index Index vectors, transpose index vectors
P,X Location code of the driver, requester

A. System Model

There are four entities involved in the system model: drivers,
requesters, edge nodes, and the crowdsourcing platform. In
Fig.3, a general spatial crowdsourcing model is depicted, and
in Fig.4, an offline-online spatial crowdsourcing model is
depicted. Both models are dedicated to assigning the nearest
task to the driver. The role of each entity is defined as follows:
• Requesters can release tasks on edge nodes.
• Drivers can query tasks and accept them from edge nodes,

and submit the results to the requester.
• The edge nodes are responsible for assigning tasks and

managing the local Hilbert curve parameters, in this paper
roadside units (RSU) or base stations can act as edge nodes.
• The crowdsourcing platform is responsible for user regis-

tration and issuing signature keys and parameters of attribute-
based encryption.

DriversRequsters

Edge Node

Crowdsourcing Platform

① ①
①

②
③

④

⑤

⑥

⑦

①Registration ②Broadcast Parameters ③Upload Tasks ④Query Tasks  
⑤Oblivious Transfer ⑥Return Search Results ⑦Submit Answer

Fig. 3: General Spatial Crowdsourcing Model
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①Registration ②Broadcast Parameters ③Upload Tasks ④Offline Request  
⑤Oblivious Transfer ⑥Return Results ⑦Equality Test ⑧Submit Answer

⑧

Fig. 4: Offline-Online Spatial Crowdsourcing Model

B. Threat Model

Each entity is defined in the threat model as follows:
Users (requesters and drivers) and edge nodes are consid-

ered as honest-but-curious entities (semi-honest) [34], which
means that they follow protocols but desire to infer sensitive
information about other entities.

The crowdsourcing platform is considered to be an honest
entity, which is honestly responsible for user registration
and issuing signature keys and parameters of attribute-based
encryption.

Note that in this paper, we also assume no collusion between
users and the edge nodes [35]. Since spatial crowdsourcing is a
practical application model, the crowdsourcing platform would
damage its reputation and interests by revealing the sensitive
information of the users, so this assumption is reasonable in
real world.

C. Design Goals

The PriTAEC scheme supports multi-driver and multi-task
scenarios, which will meet the following utility and security
goals.

Utility Goals. The PriTAEC scheme meets the following
utility goals:
• Grid Range Query. The driver can send a task query

request to the edge node to obtain the tasks within the grid
range.
• Nearest Distance Task Assignment. The driver can send

a task query request to the edge node to obtain the nearest
task.
• Data Access Control. The requester can set task at-

tributes, such as locations or interests, and only drivers who
satisfy the task attributes are allowed to access the task.
• Offline-Online Task Assignment. When the driver does

not know his/her final location during the moving process,
the edge node can receive tasks within a certain time period
instead of the driver. Once the driver has determined the
location, he/she can assist the edge node to assign tasks
through simple online operations.

Security Goals. The PriTAEC scheme meets the following
security goals:
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• Location Privacy. Users (requesters and drivers) are not
willing to disclose their location to edge nodes, so users do
not upload their real location information in plaintext but in
ciphertext or generalized form.
• Confidentiality of Task Content. The requesters do not

want to reveal the specific task content to the edge nodes, so
the requesters utilize cryptography to preserve the task content.

D. Main Ideas

The PriTAEC scheme divides the task assignment process
into two phases. In the first phase, the edge node implements
the range query for the driver. In the second phase, the edge
node assigns the nearest task to the driver.

First Stage. The edge node divides the local spatial region
into grids and generates a Hilbert curve in the grid. The driver
and requester can map their real location to the Hilbert curves
to obtain the Hilbert values. When a requester releases a task,
the requester needs to process the Hilbert value by Bloom filter
and then upload the filtered value to the edge node. When a
driver queries a task, the driver selects the Hilbert values of
the neighboring grids according to his/her location in the grid,
then filter these Hilbert values and upload the filtered values
to the edge node. After receiving the location filter values
from the driver and the requester, the edge node utilizes the
properties of Bloom filter to determine whether the task is
within the query range of the driver.

Second Stage. To get the nearest task, the requester and
driver use the characteristics of geohash to sense the location
distance. To preserve location privacy, the requester constructs
the geohash prefix encoding family and perturbs the order of
prefix encoding in the prefix encoding family. The requester
and driver then perceive the length of the same prefix encoding
in thier geohash encoding by performing the oblivious transfer
and private equality test protocols. After the above protocols,
the driver uploads the matching index to the edge node. Then,
the edge node can recover the encoding order and sense the
distance between the driver and the requester, and finally the
edge node can find the nearest task and assign it to the driver.

V. DETAILED CONSTRUCTION OF PRITAEC
To clearly express the details of the scheme PriTAEC,

this section describes the crowdsourcing process between a
driver and multiple requesters. Specifically, we describe the
scheme PriTAEC in seven phases, which includes: (1) system
initialization; (2) user registration; (3) task release; (4) task
query; (5) range query; (6) finding the nearest task; (7)
decrypting the task.

A. System Initialization

During the system initialization phase, the edge node gen-
erates the necessary system parameters to implement task
assignments, as shown in the following steps:

Step 1 (Constructing a Hillbert curve): The edge node
divides the geographical area under its jurisdiction into a grid
G and constructs a Hilbert curve within it, which is used
to convert the two-dimensional location coordinates into one-
dimensional Hilbert curve values.

As an example, Fig. 2 depicts the grid G, which contains
the grid coordinates and the Hilbert values for each subgrid.
In particular, users can convert thier location coordinates
to Hilbert values using equation H(s) = h̄ (〈x, y〉), where
h̄ is the spatial transformation function and 〈x, y〉 is the
grid coordinate. More specifically, the users first convert the
location coordinates to grid coordinates and then to Hilbert
values, which can be referenced in reference [21].

The edge node discloses the construction parameter STP =
{(Xl, Yl), N, σ,Θ} of the Hilbert curve to the authorized
users, including the curve start point (Xl, Yl), the curve order
N , the curve direction σ, and the curve scale factor Θ. Note
that we assume that the authorized users are all located under
the same edge node.

Step 2 (Broadcasting parameters): The edge node broad-
casts the public parameter pub = {STP,G, t} and the signa-
ture σsign for pub, where t denotes the current timestamp of
the edge node.

B. User Registration

During the user registration phase, the crowdsourcing plat-
form issues the relevant secret keys for the authenticated users,
as shown in the following steps:

Step 1 (Generating attribute keys): Before user registra-
tion, the crowdsourcing platform calls the attribute-based en-
cryption algorithm ABE.setup(1ℵ) to generate (PK,MSK),
where PK is the public key and MSK is the master key.

Step 2 (Constructing a Bloom filter): The crowdsourcing
platform constructs a Bloom filter of length m. Specifically, it
selects k mutually independent hash functions hi : {0, 1}∗ →
{1, ...,m}, where i ∈ (1, ..., k).

Step 3 (User registration): When a user registers, he/she
selects a role according to his/her needs, such as a driver or
requester. In this process, the user needs to provide the neces-
sary identity authentication information to the crowdsourcing
platform. After successful verification by the crowdsourcing
platform, the user will receive the hash functions h1, h2, ..., hk
and an identifier id from the crowdsourcing platform. In par-
ticular, if the user is registered as a driver, the crowdsourcing
platform forwards the MSK to the user and invokes the AES
key generation algorithm AES.KeyGen(1ℵ) to generate a
symmetric key K for the driver, otherwise the crowdsourcing
platform forwards the PK to the user.

Step 4 (Issuing signature keys): The crowdsourcing plat-
form also issues signature keys and certificates to the edge
nodes and registered users, respectively, which ensures data
integrity and signature forgery during the communication
between entities.

C. Task Release

During the task release phase, requesters encrypt locations
and task contents and upload the ciphertexts to the edge node.
Taking one requester as an example, the steps are as follows:

Step 1 (Verifying messages): After the requester receives
the public parameter pub and the signature σsign broadcasted
by the edge node, the requester verifies the integrity of the
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parameter pub by signature σsign, and then verifies the time-
liness of the parameter pub by timestamp t. If both verification
processes are passed, the requester can publish tasks with the
public parameter pub.

Step 2 (Filtering Hilbert values): Specifically, the re-
quester maps the location coordinates (xr, yr) into the Hilbert
curve and obtains the Hilbert curve value H − index. Then,
the requester initializes a binary string BFR of length m and
uses h1, ..., hk to calculate the filter values i on the H−index,
respectively, and sets the corresponding position in BFR to 1
according to the filter value i. This process is equivalent to
encrypting the location grid, where i ∈ {1, 2, ...,m}.

Step 3 (Encrypting the task content): Then, the requester
encrypts the task content M . The requester sets the ciphertext
policy L = [L1, ..., Ln], then invokes the AES encryption
algorithm AES.Enc(K,M) and attribute-based encryption
algorithm ABE.Enc(PK,K,L) to output CM and CK , re-
spectively.

Step 4 (Constructing a transposition matrix): The re-
quester also generates a random transposition matrix Mn×n to
perturb the order of geohash code to preserve location privacy,
noting that the Mn×n used in each task release is different and
n > l + 1, where l is the length of the geohash code.

Step 5 (Submitting task requests): Finally, the requester
uploads the task request Req = {idR, idtask, CK , CM ,Mn×n
, BFR, tR} and σReq to the edge node, where idR is the
requester identity, idtask is the task identity, tR is the current
timestamp of the requester, and σReq is the signature of the
Req.

D. Task Query

During the task query phase, the driver encrypts the location
and query range and uploads the ciphertext to the edge node,
as shown in the following steps:

Step 1 (Verifying messages): Similarly, after the driver
receives the public parameter pub and signature σsign, the
driver verifies the integrity of the parameter pub by signature
σsign and then verifies the timeliness of the parameter pub by
timestamp t. If both verification processes pass, the driver can
use parameter pub to query tasks.

Step 2 (Filtering Hilbert values): Specifically, the driver
maps the location coordinates (xd, yd) into the Hilbert curve,
obtains the Hilbert value H − index, and then selects several
neighboring H − indexes, which are used as the driver’s grid
query range. Note that since the driver knows the grid G and
the Hilbert curve, the driver can locate his location in the
grid after converting his real location coordinates to Hilbert
values. Then the Hilbert values of the neighboring grids can
be selected as the grid range according to his/her needs.

Next, the driver initializes a binary string BFD of length m
and then uses h1, ..., hk to compute the filter values i for each
of these H− indexes and sets the value of the corresponding
position in BFD to 1 according to the filter value i. This
process is equivalent to encrypting the location range grid.

Step 3 (Submitting task query requests): Finally, the
driver sends a query request Que = {idD, BFD, tD} and a
signature σQue to the edge node, where idD is the driver’s

identity, tD is the driver’s current timestamp, and σQue is the
signature of the Que.

E. Range Query

In the range query phase, the edge node implements range
queries for the driver, as shown in the following steps:

Step 1 (Verifying messages): In this phase, the edge node
receives Req, σReq , Que, and σQue. Similarly, the edge node
first verifies the integrity and timeliness of Req and Que.

Step 2 (Matching tasks): If both verification processes
pass, the edge node will compare BFR and BFD. For
1 ≤ i ≤ m, if BFR[i] is 1, BFD[i] is also 1, then the task is
within the driver’s grid query range.

Step 3 (Returning matching results): Finally, the
edge node forwards the matching result match =
{idR, idtask, CK , CM , tedge} and signature σmatch to the
driver, where tedge is the current timestamp of the edge node
and σmatch is the signature of the match. Note that the
scenario we describe here is a multi-requester and single-
worker scenario, so the matching result match obtained by
the edge node is not just one.

F. Finding the Nearest Task

When the driver receives the query results, the driver will
query the nearest task from the results.

Step 1 (Verifying messages): The driver receives the
message match and verifies the integrity and timeliness of
the message match, if the verification is passed, the driver
will search for the nearest task from the matched results.

Step 2 (Generating geohash codes): Specifically, the driver
calculates the location code geohash(x, y) to obtain a geohash
bit string of length l. The characteristic of geohash is that,
given two geohash bit strings, if their same prefix is longer,
then they are located closer to each other. Next, we call the
geohash bit string as the location code.

To enable the driver to perceive the distance from the task
without the location code being compromised, the PriTAEC
scheme uses oblivious transfer protocol and private equality
test protocol to solve the above problem.

In the plaintext state, the driver and requester hold their
own location codes, and the requester computes the prefix
family based on the location codes it holds. For example, if
the requester’s location code is b1b2...bl, the prefix family is
b = {b1b2...bl−1bl, b1b2...bl−1∗, ..., b1 ∗ ... ∗ ∗, ∗ ∗ ...∗}, where
∗ is a wildcard, and ∗ can match either 0 or 1. Let the driver’s
location code be a1a2...al, and the driver will match a1a2...al
with every string of length l in the prefix family, and the worst
case is l + 1 times. If the index of the first successful match
is smaller, then their same prefix is longer, so the closer their
locations are.

Step 3 (Geohash families transposition): To prevent the
location code of the requester from being leaked to the driver,
the requester builds l + 1 indexes for l + 1 strings in the
order of b. For example, the index values of b1b2...bl−1bl
and b1b2...bl−1∗ are 1 and 2, respectively. The requester adds
n − l − 1 random codes of length l to the prefix family
and constructs the initial index vector bindex = {1, 2, ..., l +
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1, ..., n−1, n}, where n is the security parameter and is greater
than l + 1. Then the requester calculates the transpose index
vector b̃index = bindex · Mn×n, where Mn×n is a random
permutation matrix whose elements are 0 or 1, which is used
to change the order of the elements in the vector bindex. Then,
the requester reorders the strings in the prefix family according
to the transpose index vector b̃index. Finally, the requester uses
the reordered prefix family to execute the oblivious transfer
protocol with the driver. Note that the original prefix family
of all requesters is set in the form of b, so the edge nodes also
know the initial index vector bindex.

Step 4 (Oblivious transfer): In the scheme PriTAEC,
oblivious transfer protocol is used to secretly perform wildcard
string matching. Specifically, let the bit strings of the driver
and the requester be X and P , respectively, and other expres-
sions of P are shown in Fig.5.

Fig. 5: Location
code

Edge node

requester driver

① time period

④ Que② Req

③ oblivious transfer

⑤ {R,q,match}

⑥  

⑦ private equality test

⑨ task
⑧ index

δ

Fig. 6: Offline-online model parameter
delivery

If P̄ = P̃ ·X ⊕X , then the bit X matches the bit P . When
P̃ = 1, the equation holds, and when P̃ = 0, if the equation
holds then P̄ = X , we can see from the table that at this time
P̄ = P , so P = X . To perform the string matching operation
while protecting the location data from being leaked, the above
equation is modified to k⊕ P̄ = k⊕ P̃ ·X⊕X . The matching
process of the bit string is shown in Algorithm 1. After the
execution of this algorithm, the driver gets the matching index.

Correctness: After the execution of OT protocol between
the requester and the driver, the driver receives the output qi.
The true value of qi is shown below:

qi =

{
ki Xi = 0

ki ⊕ P̃iP̃i+l...P̃i+(n−1)l Xi = 1

From the above equation, we can obtain the general form
of qi as qi = ki ⊕ (P̃iP̃i+l...P̃i+(n−1)l) · Xi, so ui =

ki ⊕ (P̃iP̃i+l...P̃i+(n−1)l) · Xi ⊕ C(Xi). Let K̄ be the ma-
trix form of the key ki, that is, K̄ = (k1, k2, ..., kl)

T , so
ui = K̄i ⊕ P̃[i,i+l−1] ·X ⊕X , where P̃[i,i+l−1] is the i-th bit
string of length l of the prefix family, and ti = K̄i⊕P̄[i,i+l−1].
If P = X , then ui = ti.

Step 5 (Submitting matching indexs): After the driver
and the requester perform the Algorithm 1, the driver can get
multiple indexes j of successful matches. The driver uploads
these indexes and the corresponding requester identity id to
the edge node.

Step 6 (Returning the nearest task): Since the edge node
holds the transposition matrix Mn×n, the index vector bindex,
and the matching index j, the edge node can use index j
to find the corresponding original index in bindex, and then

the edge node records the smallest original index in bindex.
Finally, the edge node compares the smallest original index
values of multiple tasks to find the nearest task to the driver
and forwards the task identifier to the driver.

Algorithm 1 Geohash Encoding Matching Protocol

Parameters:
1. Two parties: the requester and the driver.
2. The length of the requester’s bit string is nl, the length

of the driver’s bit string is l, and the number of matches is
defined as n.

3. A repeated encoding function C : {0, 1} → {0, 1}n,
for example, C(a) = aa..aa, the length of C(a) is n.
Requester input: geohash bit string P ∈ {0, 1, ∗}nl.
Driver input: geohash bit string X ∈ {0, 1}l.
Protocol:

1. [Random Keys] The requester randomly selects
{ki} ← {0, 1}n, where 1 ≤ i ≤ l.

2. [OT] For each i, the driver and the requester execute
the OT protocol.

a. The driver inputs a bit Xi

b. The requester inputs a pair of strings {ki, ki ⊕
P̃iP̃i+l...P̃i+(n−1)l} of length n, where P̃i denotes the i-
th bit character

c. The driver receives the output qi
3. [Matrix Form]

a. The requester constructs the matrix Tl×n, where the
i-th row is the vector ti = ki ⊕ P̄iP̄i+l...P̄i+(n−1)l

b. The driver constructs the matrix Ul×n, where the
i-th row is the vector ui = qi ⊕ C(Xi)

4. [Private Equality Test]
a. For each j, where 1 ≤ j ≤ n. the driver and the

requester invoke the private equality test function
b. The requester as the sender inputs each column tj

of the matrix Tl×n
c. The driver as the receiver inputs each column uj of

the matrix Ul×n
d. If tj = uj , the driver receives output 1

For example, let the location code of the requester be
101, its transposition index vector b̃index = {1, 4, 3, 2}, the
transposition prefix family be {101, ∗ ∗ ∗, 1 ∗ ∗, 10∗}, and
the location code of the driver be 100, so after the oblivious
transfer protocol, the driver gets the indexs j as 2, 3, 4. Then
the driver uploads the indexs j to the edge node, and the edge
node calculates the original indexes as 4, 3, 2 in order. The
edge node saves the smallest index 2, and finally the edge node
compares the smallest indexes of multiple tasks and forwards
the task identifier id of the task with the smallest index to
the driver. Note that here there may be the case of multiple
identical smallest indexes, and we randomly choose one as
the nearest task, at which point our scheme is an approximate
nearest task assignment.

G. Decrypting Task

When the driver receives the nearest task, he or she will
decrypt the task and submit the result.
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Step 1 (Generating the decryption key): After the driver
receives the nearest task, the driver invokes the key generation
algorithm ABE.KeyGen(MK,P ) to generate the decryption
key skP .

Step 2 (Task decryption): If P satisfies L, the driver
invokes the decryption algorithm ABE.Dec(CK , skP ) to get
the symmetric key K, and finally the driver invokes the
symmetric decryption algorithm AES.Dec(K,CM ) to get the
task content.

Step 3 (Submitting task results): When the driver finishes
the task and gets the task result , the driver invokes the sym-
metric encryption algorithm AES.Enc(K, result) to encrypt
the task result and finally submits the ciphertext result to the
requester.

H. Optimization

In order to improve the efficiency of crowdsourcing, our
scheme supports offline operations. During this process, edge
nodes can perform complex OT operations for drivers without
revealing the privacy of drivers and requesters. We focus on
the case where drivers do not know their final locations during
the move and want to collect tasks in advance. When the driver
stops moving and gets the exact location, the driver can find
the nearest task through simple online calculations, as shown
in the following steps. Fig.6 depicts the parameter interactions
between entities in phase H .

Step 1 (Constructing the time period): Specifically, the
driver selects a certain time interval (ts, te) and forwards it to
the edge node. Then, the edge node will receive the tasks for
the driver in time period (ts, te).

Step 2 (Verifying messages): After receiving the re-
quester’s task request Req, the edge node verifies the integrity
and timeliness of the message Req.

Step 3 (Oblivious transfer): If the timestamp of the task
request Req is within the time period (ts, te), the edge node
and the requester perform OT protocol. Algorithm 2 describes
the OT protocol between the edge node and the requester.

Step 4 (Submitting query requests): After the time period
(ts, te) and the driver get the position (xd, yd), the driver
uploads the query request Que to the edge node.

Step 5 (Verifying messages): The edge node first verifies
the integrity and validity of the message Que.

Step 6 (Range query): Then comparing the BFD uploaded
by the driver with the BFR received in the time period (ts, te).
This process is the range query stage, which can find tasks
within the range.

Step 7 (Returning query results): The edge node returns
the random number R, outputs qi and matching information
match to the driver, note that each task here corresponds
to a random number R and the length is l. Note that R is
R1R2...Rl.

Step 8: (Private equality test) Then the driver converts the
real location (xd, yd) to the geohash code X and calculates
δ = X ⊕R. After that, the driver forwards δ to the requester
that matchs the range to perform private equality test. Algo-
rithm 3 describes the private equality test algorithm.

Algorithm 2 Oblivious Transfer

Parameters:
The functions of the symbols used in this algorithm are

the same as in Algorithm 1
Protocol:

1. [Verification] The edge node checks the integrity and
timeliness of the message Req, and determines whether the
timestamp of the task request Req is within the time period
(ts, te). If the check passes, the edge node and the requester
perform OT protocol.

2. [Random key] The requester chooses {ki} ← {0, 1}n
at random, where 1 ≤ i ≤ l

3. [OT] For each i, the requester and the edge node
execute the OT protocol

a. The edge node inputs a bit Ri, note that Ri is
randomly selected by the edge node.

b. The requester inputs a pair of strings {ki, ki ⊕
P̃iP̃i+l...P̃i+(n−1)l} of length n, where P̃i represents the
bit character of the ith bit

c. The edge node receives the output qi

Algorithm 3 Private Equality Test

3. [Matrix Form]
1. The requester receives δ and constructs a matrix Tl×n

whose i-th row is the vector ti = ki⊕ P̄iP̄i+l...P̄i+(n−1)l⊕
(P̃iP̃i+l...P̃i+(n−1)l) · δi

2. The driver receives qi and constructs a matrix Ul×n
whose ith row is the vector ui = qi ⊕ C(Xi)
4. [Private Equality Test]

a. For each j, where 1 ≤ j ≤ n, the driver and requester
call the equality test function

b. The requester enters each column tj of matrix Tl×n as
the sender

c. The driver enters each column uj of matrix Ul×n as
receiver d. If tj = uj , the driver receives output 1

Step 9 (Decrypting and submit results): Next, the driver
finds the nearest task, and the process of decrypting the task
and submitting the result is the same as before.

VI. SECURITY ANALYSIS AND PROOFS

In this section, we provide security analysis and proofs for
the PriTAEC scheme under semi-honest scenarios from both
drivers’ and requesters’ perspectives.

A. Security Analysis

Our scheme is designed to preserve location privacy and
task content privacy. On the functional side, our scheme
can implement range query, fine-grained location matching,
and task encryption and decryption. Therefore, we analyze
the security of our scheme in terms of each of these three
functions. Note that we analyze the security of our scheme
under the semi-honest adversary model. The collusion problem
and malicious users are out of the scope of this paper.
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Range query. In this phase, requesters and drivers use
Hilbert curves to map their two-dimensional locations to one-
dimensional curves, which can map the user’s real location
into the grid cloaked area and play a certain role in location
obfuscation. When users launch a request, their locations need
to be bloom filtered before they are submitted to the fog node.
The security of the grid range query depends on the one-way
nature of the hash functions used by the Bloom filter. Since
the fog node does not know the hash key of the Bloom filter
used by the user, it cannot infer the real location of the user. To
achieve semantic security, our scheme requires the requester
to submit only one location grid, while the driver must submit
at least one grid. This avoids two users uploading an identical
location so that the fog node gets more information.

Fine-grained location matching. In this phase, users im-
plement fine-grained location matching using grid location
encoding, in which the security relies on the security nature
of the oblivious transfer and private equality protocols. In
terms of the oblivious transfer, the driver can only learn the
message xb when it inputs the selection bit b, and will not
get any information about x1−b. The requester only needs to
input the string pair (x0, x1) and will not get any output. In
terms of the privacy equality test, the driver and requester
input x0 and x1 respectively, and if x0 = x1, the driver
receives the bit 1, otherwise the driver receives the bit 0,
while the requester does not get any information about x0.
In particular, the prefix family of the requester is perturbed
using the permutation key Mn×n. Since the driver does not
know the permutation key Mn×n, the driver cannot infer the
location of the requester during the execution of the oblivious
transfer and private equality protocols. Note that only the
requester and the crowdsourcing server hold the permutation
key Mn×n. Since the oblivious transfer and private equality
protocols are performed between the requester and the driver,
the crowdsourcing server can only sense the distance between
users using the permutation key Mn×n, and cannot infer the
location of any user.

Task encryption and decryption. In this phase, the security
of the task content of our scheme relies on the security of hy-
brid encryption, which includes symmetric encryption (AES)
and attribute-based encryption (CP-ABE) [13]. The requester
uses the symmetric key K to encrypt the task content, and the
symmetric key K is encrypted by the ciphertext policy L set
by the requester. The symmetric key K cannot be broken if
the fog node does not have matching attributes.

B. Security Proofs

In this section, we focus on proving the security of the
task assignment, which involves the oblivious transfer and
the private equality test cryptographic primitives. Specifically,
we prove the security of the task assignment under a semi-
honest adversary model, where an adversary can corrupt a
requester or driver, noting that we assume that the edge node
does not collude with any of the entity users. We prove that
the task assignment process is secure, since edge nodes only
know index vectors and do not know real locations of drivers
and requesters, so edge nodes do not reveal the sensitive

information of users. If the task assignment process is secure,
we only need to show that views of corrupted parties can
be simulated during protocol execution. We use the following
theory to prove the security of the task assignment phase.

Theory 1 If a protocol is fully simulable, then its subpro-
tocols are also fully simulable.

Theory 2 If the oblivious transfer and private equality
test protocols satisfy security under semi-honest adversaries,
then the task assignment can implement functional functions
securely under semi-honest adversaries.

Proof: We give the proof under a hybrid model, where
the OT protocol and the private equality test are computable
under the ideal functional functions. Specifically, we prove
that the adversary’s view is simulable from two perspectives:
the requester is corrupted and the driver is corrupted.

The requester is corrupted: let the adversary A controls
the requester in the real world, we construct a simulator S,
which invokes the A on input, and then the simulator S
performs the specific protocol with the adversary A as an
honest driver.

1. The input of the simulator S: the location code P and
the matrix Tl×n of the adversary A.

2. The S simulates the oblivious transfer function: one side
of the input is the value pair constructed by the adversary
A according to the location code P . Since the S does not
know the input of the honest driver, the S randomly selects the
location code X as the input of the other side of the oblivious
transfer function.

3. The S simulates the private equality test function: It
inputs the columns uj , where the uj is generated by the S
calls the oblivious transfer function. In this case, the adversary
A does not get any output.

Since the requester does not get any output in the real
protocol, we only need to show that the distribution of the
ideal execution (the simulator S and the adversary A) and
the distribution of the real execution (the adversary A and
the honest driver) are computationally indistinguishable, as
follows:

{S(P, SOT (P, Tl×n), SPEQT (tj))}
c≡{V iew(P,ROT (P, Tl×n), RPEQT (tj))}

where the SOT (P, Tl×n) is the function used by the simu-
lator S to get the requester’s view in the OT protocol, the
SPEQT (tj) is the function used by the simulator S to get
the requester’s view in the private equality test protocol, and
the View() represents the view of the real execution of the
protocol. The ROT (P, Tl×n) denotes the income message
of the requester in the real oblivious transfer execution, the
RPEQT (tj) denotes the income message of the requester in
the real private equality test execution, and 1 ≤ j ≤ n.

The only difference between the above two distributions is
that the S randomly chooses the X instead of the driver’s real
input, and the simulator S and the adversary A perform the
oblivious transfer protocol in which the S can generate the
view of the adversary A in the real OT without knowing the
driver’s real input. Assuming that there is a probability poly-
nomial adversary that can distinguish the two distributions,
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this implies that the adversary can learn the driver’s bits, but
this contradicts the security of the OT protocol. Similarly, it
is clear from the properties of the private equality test that
the requester’s view can be generated without knowing the
driver’s input, and that the two distributions are computation-
ally indistinguishable even if the P matches with the X .

The driver is corrupted: Let the adversary A controls the
driver in the real world. We construct a simulator S whose
input invokes the adversary A. The simulator S interacts with
the adversary A as an honest requester.

1. The input of the simulator S: the location code X and
the matrix Ul×n of the adversary A.

2. The S sends the X to the trusted third party, which
uses the X to perform the task assignment. Then, the trusted
third party returns the matching result to the simulator S.
We assume that the matching results are j1, ..., jb, where
1 ≤ j1 ≤ ... ≤ jb ≤ n, which means the ji-th string matches
with the X .

Since the S knows the location code X , for j ∈ {j1, ..., jb},
it can randomly select b strings from the prefix family of the
X as the matching strings for the adversary A. However, for
j′ ∈ {1, ..., n}−{j1, ..., jb}, the S randomly selects the strings
that are independent of the matching results.

3. The S simulates the oblivious transfer function, For
j ∈ {j1, ..., jb}, S generates the value pairs honestly like the
requester. For j′ ∈ {1, ..., n} − {j1, ..., jb}, the S generates
the value pairs based on the randomly chosen strings. Finally,
the S sends the corresponding values to the adversary A.

4. The S simulates the private equality test function with
the input tj , where the tj is generated by the oblivious transfer
protocol. The final outputs are j1, ..., jb.

We claim that the distribution of the ideal model (the
simulator S and the adversary A) and the distribution of the
real execution (the adversary A and the honest requester) are
computationally indistinguishable as follows:

{S(X,SOT (X,Ul×n), SPEQT (uj))}
c≡{V iew(X,ROT (X,Ul×n), RPEQT (uj))}

The only difference between the two distributions is that for
j′ ∈ {1, ..., n}−{j1, ..., jb}, the simulator S randomly selects
the string, but this does not affect the results returned to the
adversary A in the private equality test phase. Therefore, the
adversary A is computationally indistinguishable between the
two distributions.

In the optimization algorithm, the security of the task
assignment of the PriTAEC scheme relies on the precomputing
oblivious transfer, whose security proof can be referenced to
[36].

VII. PERFORMANCE EVALUATION

In this section, we analyze the performance of schemes
PriTAEC, LPRQ [37], and pMatch [38] and evaluate their
performance experimentally. Table II describes the differences
among our scheme, the pMatch scheme, and the LPRQ
scheme.

A. Performance Analysis

Our scheme consists of four phases: grid range query,
nearest task assignment, task encryption and decryption, and
result submission.

Grid range query phase. In the grid range query phase,
requesters and drivers need to map Hilbert values to Bloom
filter values, and the computational cost of this process is O(k·
m). The computational cost of implementing range queries at
edge nodes is O(m), where k is the number of hash functions
invoked in Bloom filter, and m is the length of the binary
string used by the Bloom filter.

Nearest task assignment. In the nearest task assignment
phase, the requester and driver perform oblivious transfer and
private equality test protocols. Since our scheme uses OT
extensions, only some initial base OT instances are required,
where the communication overhead is O(κ2) and the compu-
tation overhead is O(κ). Note that κ is a security parameter
for OT extensions. Any number of OTs can be constructed
using these base OTs, the communication and computation
overheads are only proportional to the total input size of the
participants, and the computation only includes symmetric key
operations.

In our scheme, l OT instances are involved, where each
string is of length n, so the total overhead is O(l × n). In
the private equality test phase, we set the security statistics
parameter of the private equality test protocol to be λ and
the probability of false positives to be 2−λ. This protocol
also uses OT extensions which require constant symmetric key
operations and 488+λ-bit communication overhead, note that
the base OT required for the private equality test protocol can
invoke the initial base OT constructed above. After the users
perform the oblivious transfer and the private equality test, the
edge node search for the nearest task for the driver, and the
computational and communication overheads of this process
are proportional to the number of tasks within the grid.

Task encryption and decryption. The communication and
computation overheads of task encryption and task result
submission depend on the communication and computation
overheads of the attribute-based encryption [13] and the AES
symmetric encryption.

LPRQ scheme and pMatch scheme. However, in the
LPRQ scheme, the main time consumption for the task as-
signment comes from the exponential operation where the
computational overheads of the requester and driver are 4Ce
and 6Ce, respectively. Note that Ce is a single exponential
operation in Z∗n2(|n2| = 2048).

In the pMatch scheme, the main time consumption for the
task assignment comes from the bilinear pairing operation E
and hash operation H where the computational overheads of
the requester and driver are 5E+H and 4E+H , respectively,
where we choose a symmetric elliptic curve SS512 with a
160-bit prime p.

B. Evaluation Results

Experimental Settings. We tested the performance of the
task assignment phase in a virtual machine with Ubuntu 21.10
and C++, where the operating system memory is 2GB and
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TABLE II: Comparison with related work

Scheme Users’ privacy Range query Edge computing Access Control Offline - Online Operation
pMatch X − × − ×
LPRQ X X X − ×

our scheme X X X X X

”X” means satisfied, ”×” means not satisfied and ”−” means not involved .

the linux kernel is 5.13.0-22-generic. The main time overhead
of the task assignment phase of our scheme comes from the
oblivious transfer and private equality test protocols performed
between the requester and the driver or the private equality test
protocol performed between the requester and the driver in the
optimization algorithm. Therefore, we tested the time overhead
of the oblivious transfer and privte equality test using the code
of emp-ot [39] and KKRT16 [40].

Experimental Results. We set the length of the location
code to l. To protect the location code from leakage, the
requester adds the disturbing code to the prefix family of the
location codes and sets the number of elements of the prefix
family to n. Note that n is greater than l + 1.

We first measure the impact of the location code length l
on the time overhead of task assignments. As shown in Fig.7,
we set n to 25 and 30, respectively, and then measure the
time consumed for the task assignment when l varies from
10 to 20, where n determines the number of private equality
test and l determines the number of oblivious transfers. It can
be observed that the time overhead of the task assignment
process is 53ms when n = 25 and l = 10, and 63ms when
n = 30 and l = 10. We measure the effect of the number of
elements n of the prefix family on the time overhead of task
assignments. As shown in Fig.8, we set l to 10 and observe
the time consumed for the task assignment as the number of
elements n of the prefix family changes from 10 to 20. It can
be observed that when l = 10 and n = 20, the time overhead
of the task assignment process is 51ms.
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In the optimization algorithm, we measure the time over-
head of executing the oblivious transfer protocol between the
driver and the requester as shown in Fig.9. It can be observed
that the time overhead of the oblivious transfer protocol is
12ms when n = 25 and l = 10, and 13ms when n = 30
and l = 10. We measure the time overhead of executing the
private equality protocol between the requester and the driver
as shown in Fig.10, where n is set to 25 and 30, respectively,
and the independent variable l varies from 10 to 20. It can be
observed that the time overhead of the private equality protocol

is 40ms when n = 25 and l = 10, and 50ms when n = 30
and l = 10.
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In the optimization algorithm, we measure the time over-
head of executing the oblivious transfer protocol between the
edge node and the requester when l equals 10 as shown in
Fig.11. It can be observed that when l = 10 and n = 11, the
time overhead of the oblivious transfer protocol is 12ms. We
measure the time overhead of executing the private equality
protocol between the driver and the requester as shown in
Fig.12, where the independent variable n varies from 10 to
20. It can be observed that when l = 10 and n = 11, the time
overhead of the private equality protocol is 40ms.
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We also compared the time overhead of the PriTAEC
scheme, LPRQ scheme, and pMatch scheme in the task
assignment phase. Fig.13 depicts the time consumption of the
requester in the task assignment phase of the PriTAEC, LPRQ,
pMatch scheme, where l=10, n=25, the number of keywords
of pMatch are 6, and the independent variable is the number
of requests varying from 10 to 100. Fig.14 depicts the time
consumption of the driver in the task assignment phase of
the PriTAEC, LPRQ, pMatch scheme, where l=10, n=25, the
number of keywords of pMatch are 6, and the independent
variable is the number of queries varying from 10 to 100. It
can be observed that when the number of requests is 100, the
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time overheads of the task assignments of schemes LPRQ,
pMatch, and PriTAEC are 9s, 7s, and 6s, respectively.
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driver

In summary, in our scheme, the time overhead of the task
assignment grows with the values of l and n, where the value
of l affects the number of the oblivious transfer, and the value
of n affects the number of the private equality test. Through the
above experimental analysis and comparison, we can conclude
that our scheme can implement task assignments efficiently.

VIII. CONCLUSION

In this paper, we describe the privacy issues that exist in
spatial crowdsourcing and design the PriTAEC scheme which
can assign tasks efficiently and securely. Our scheme meets
the designed goals of security, practicality, and timeliness.
Considering security, we implement the grid range query
using Bloom filters and then fine-grained nearest distance task
assignments using oblivious transfer. Considering practicality,
we combine symmetric encryption and attribute-based encryp-
tion to implement access rights setting. Considering timeliness,
we use the paradigm of edge computing to reduce the commu-
nication latency and design the offline-online phase for task
assignment to reduce the computational overhead of drivers.
Finally, through theoretical and experimental, we conclude
that the PriTAEC scheme can implement task assignments
efficiently and securely.
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